Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0880220200580080687
Journal of Microbiology
2020 Volume.58 No. 8 p.687 ~ p.695
The effects of deletion of cellobiohydrolase genes on carbon source-dependent growth and enzymatic lignocellulose hydrolysis in Trichoderma reesei
Ren Meibin

Wang Yifan
Liu Guoxin
Zuo Bin
Zhang Yuancheng
Wang Yunhe
Liu Weifeng
Liu Xiangmei
Zhong Yaohua
Abstract
The saprophytic fungus Trichoderma reesei has long been used as a model to study microbial degradation of lignocellulosic biomass. The major cellulolytic enzymes of T. reesei are the cellobiohydrolases CBH1 and CBH2, which constitute more than 70% of total proteins secreted by the fungus. However, their physiological functions and effects on enzymatic hydrolysis of cellulose substrates are not sufficiently elucidated. Here, the cellobiohydrolase-encoding genes cbh1 and cbh2 were deleted, individually or combinatively, by using an auxotrophic marker-recycling technique in T. reesei. When cultured on media with different soluble carbon sources, all three deletion strains (¥Äcbh1, ¥Äcbh2, and ¥Äcbh1¥Äcbh2) exhibited no dramatic variation in morphological phenotypes, but their growth rates increased apparently when cultured on soluble cellulase-inducing carbon sources. In addition, ¥Äcbh1 showed dramatically reduced growth and ¥Äcbh1¥Äcbh2 could hardly grew on microcrystalline cellulose (MCC), whereas all strains grew equally on sodium carboxymethyl cellulose (CMC-Na), suggesting that the influence of the CBHs on growth was carbon source-dependent. Moreover, five representative cellulose substrates were used to analyse the influence of the absence of CBHs on saccharification efficiency. CBH1 deficiency significantly affected the enzymatic hydrolysis rates of various cellulose substrates, where acid pre-treated corn stover (PCS) was influenced the least. CBH2 deficiency reduced the hydrolysis of MCC, PCS, and acid pre-treated and delignified corncob but improved the hydrolysis ability of filter paper. These results demonstrate the specific contributions of CBHs to the hydrolysis of different types of biomass, which could facilitate the development of tailor-made strains with highly efficient hydrolysis enzymes for certain biomass types in the biofuel industry.
KEYWORD
Trichoderma reesei, cbh1, cbh2, biomass conversion, biofuels
FullTexts / Linksout information
 
Listed journal information
MEDLINE ÇмúÁøÈïÀç´Ü(KCI) ´ëÇÑÀÇÇÐȸ ȸ¿ø